Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10922, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035357

RESUMO

Wildfire smoke often covers areas larger than the burned area, yet the impacts of smoke on nearby aquatic ecosystems are understudied. In the summer of 2018, wildfire smoke covered Castle Lake (California, USA) for 55 days. We quantified the influence of smoke on the lake by comparing the physics, chemistry, productivity, and animal ecology in the prior four years (2014-2017) to the smoke year (2018). Smoke reduced incident ultraviolet-B (UV-B) radiation by 31% and photosynthetically active radiation (PAR) by 11%. Similarly, underwater UV-B and PAR decreased by 65 and 44%, respectively, and lake heat content decreased by 7%. While the nutrient limitation of primary production did not change, shallow production in the offshore habitat increased by 109%, likely due to a release from photoinhibition. In contrast, deep-water, primary production decreased and the deep-water peak in chlorophyll a did not develop, likely due to reduced PAR. Despite the structural changes in primary production, light, and temperature, we observed little significant change in zooplankton biomass, community composition, or migration pattern. Trout were absent from the littoral-benthic habitat during the smoke period. The duration and intensity of smoke influences light regimes, heat content, and productivity, with differing responses to consumers.

2.
ISME J ; 15(9): 2763-2778, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33790425

RESUMO

Endophytes are microbes that live, for at least a portion of their life history, within plant tissues. Endophyte assemblages are often composed of a few abundant taxa and many infrequently observed, low-biomass taxa that are, in a word, rare. The ways in which most endophytes affect host phenotype are unknown; however, certain dominant endophytes can influence plants in ecologically meaningful ways-including by affecting growth and immune system functioning. In contrast, the effects of rare endophytes on their hosts have been unexplored, including how rare endophytes might interact with abundant endophytes to shape plant phenotype. Here, we manipulate both the suite of rare foliar endophytes (including both fungi and bacteria) and Alternaria fulva-a vertically transmitted and usually abundant fungus-within the fabaceous forb Astragalus lentiginosus. We report that rare, low-biomass endophytes affected host size and foliar %N, but only when the heritable fungal endophyte (A. fulva) was not present. A. fulva also reduced plant size and %N, but these deleterious effects on the host could be offset by a negative association we observed between this heritable fungus and a foliar pathogen. These results demonstrate how interactions among endophytic taxa determine the net effects on host plants and suggest that the myriad rare endophytes within plant leaves may be more than a collection of uninfluential, commensal organisms, but instead have meaningful ecological roles.


Assuntos
Endófitos , Plantas , Alternaria , Endófitos/genética , Fungos/genética , Fenótipo
3.
Sci Total Environ ; 668: 216-223, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852198

RESUMO

Associations of organic carbon (OC) with iron (Fe) oxide minerals play an important role in regulating the stability of OC in soil environments. Knowledge about the fate and stability of Fe-OC complexes is impaired by the heterogeneity of OC. Additional biogeochemical variables in soil environments, such as redox conditions and microbes, further increase complexity in understanding the stability of mineral-associated soil OC. This study investigated the fate and stability of model organic compounds, including glucose (GL), glucosamine (GN), tyrosine (TN), benzoquinone (BQ), amylose (AM), and alginate (AL), complexed with an Fe oxide mineral, ferrihydrite (Fh), during microbial reduction. During a 25-d anaerobic incubation with Shewanella putrefaciens CN32, the reduction of Fe followed the order of Fh-BQ > Fh-GL > Fh-GN > Fh-TN > Fh-AL > Fh-AM. In terms of OC released during the anaerobic incubation, Fh-GN complexes released the highest amount of OC while Fh-AM complexes released the lowest. Organic carbon regulated the reduction of Fe by acting as an electron shuttle, affecting microbial activities, and associating with Fh. Benzoquinone had the highest electron accepting capacity, but potentially can inhibit microbial activity. These findings provide insights into the roles of different organic functional groups in regulating Fe reduction and the stability of Fh-bound OC under anaerobic conditions.


Assuntos
Compostos Férricos/metabolismo , Modelos Químicos , Compostos Orgânicos/metabolismo , Anaerobiose
4.
Sci Total Environ ; 651(Pt 1): 1253-1260, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30360257

RESUMO

Associations with minerals can potentially augment soil organic carbon (SOC) stability by reducing the bioavailability and degradation of SOC. However, few studies have directly measured aerobic respiration of mineral-bound SOC. In this study, we investigated the microbial aerobic respiration and bioavailability of ferrihydrite-sorbed glucose (Fh-GLU) and ferrihydrite-sorbed formic acid (Fh-FA) by adding 13C-labeled compounds to a soil. During an 11-day incubation, 30.2% of free, non-Fh-sorbed glucose (GLU) and 61.8% of free formic acid (FA) were respired, whereas 4.2% and 27.9% of Fh-GLU and Fh-FA were respired, respectively. Our results demonstrated that Fh-bound GLU/FA had lower bioavailability compared to free organic compounds. Associations with Fh led to greater inhibition in the bioavailability of GLU than that for FA. The priming effects of added compounds on the respiration of native SOC were decreased by their association with Fh. Our results demonstrated that the bioavailability and priming effect of organic compounds depend on their interactions with minerals.

5.
Environ Sci Technol ; 51(4): 2068-2076, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28081361

RESUMO

Carbonaceous nanomaterials are widely used in industry and consumer products, but concerns have been raised regarding their release into the environment and subsequent impacts on ecosystems and human health. Although many efforts have been devoted to understanding the environmental fate of carbonaceous nanomaterials, information about their microbial transformation is still rare. In this study, we found that within 1 month a polycyclic aromatic hydrocarbon-degrading bacterium, Mycobacterium vanbaalenii PYR-1, was able to degrade both pristine and carboxyl-functionalized multiwalled carbon nanotubes (p-MWCNT and c-MWCNT), as demonstrated by consistent results from high resolution transmission electron microscopy, Raman spectroscopy, and confocal Raman microspectroscopy. Statistical analysis of Raman spectra identified a significant increase in the density of disordered or amorphous carbon in p-MWCNT and c-MWCNT after biodegradation. Microbial respiration further suggested potential mineralization of MWCNTs within about 1 month. All of our analyses consistently showed higher degradation or mineralization of c-MWCNT compared to p-MWCNT. These results highlight the potential of using bacteria in engineered systems to remove residual carbonaceous nanomaterials and reduce risk of human exposure and environmental impact. Meanwhile, our finding suggests possible transformation of carbonaceous nanomaterials by polycyclic aromatic hydrocarbon-degrading bacteria in the natural environment, which should be accounted for in predicting the environmental fate of these emerging contaminants and in nanotechnology risk regulation.


Assuntos
Mycobacterium/metabolismo , Nanotubos de Carbono/química , Microscopia Eletrônica de Transmissão , Nanotecnologia , Hidrocarbonetos Policíclicos Aromáticos
6.
Ore Geol Rev ; 67: 170-188, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26594080

RESUMO

In the Neoarchean (~ 2.7 Ga) contact metamorphosed charnockitic footwall of the Mesoproterosoic (1.1 Ga) South Kawishiwi intrusion of the Duluth Complex, the primary metamorphic mineral assemblage and Cu-Ni-PGE sulfide mineralization is overprinted by an actinolite + chlorite + cummingtonite + prehnite + pumpellyite + quartz + calcite hydrothermal mineral assemblage along 2-3 cm thick veins. In calcite, hosted by the hydrothermal alteration zones and in a single recrystallized quartz porphyroblast, four different fluid inclusion assemblages are documented; the composition of these fluid inclusions provide p-T conditions of the fluid flow, and helps to define the origin of the fluids and evaluate their role in the remobilization and reprecipitation of the primary metamorphic sulfide assemblage. Pure CO2 fluid inclusions were found as early inclusions in recrystallized quartz porphyroblast. These inclusions may have been trapped during the recrystallization of the quartz during the contact metamorphism of the footwall charnockite in the footwall of the SKI. The estimated trapping pressure (1.6-2.0 kbar) and temperature (810-920 °C) conditions correspond to estimates based on felsic veins in the basal zones of the South Kawishiwi intrusion. Fluid inclusion assemblages with CO2-H2O-NaCl and CH4-N2-H2O-NaCl compositions found in this study along healed microfractures in the recrystallized quartz porphyroblast establish the heterogeneous state of the fluids during entrapment. The estimated trapping pressure and temperature conditions (240-650 bar and 120-150 °C for CO2-H2O-NaCl inclusions and 315-360 bar and 145-165 °C for CH4-N2-H2O-NaCl inclusions) are significantly lower than the p-T conditions (> 700 °C and 1.6-2 kbar) during the contact metamorphism, indicating that this fluid flow might not be related to the cooling of the Duluth Complex and its contact aureole. The presence of chalcopyrite inclusions in these fluid inclusions and in the trails of these fluid inclusion assemblages confirms that at least on local scale these fluids played a role in base metal remobilization. No evidences have been observed for PGE remobilization and transport in the samples. The source of the carbonic phase in the carbonic assemblages (CO2; CH4) could be the graphite, present in the metasedimentary hornfelsed inclusions in the basal zones of the South Kawishiwi intrusion. The hydrothermal veins in the charnockite can be characterized by an actinolite + cummingtonite + chlorite + prehnite + pumpellyite + calcite (I-II) + quartz mineral assemblage. Chlorite thermometry yields temperatures around 276-308 °C during the earliest phase of the fluid flow. In the late calcite (II) phase, high salinity (21.6-28.8 NaCl + CaCl2 equiv. wt.%), low temperature (90-160 °C), primary aqueous inclusions were found. Chalcopyrite (± sphalerite ± millerite), replacing and intersecting the early hydrothermal phases, are associated to the late calcite (II) phase. The composition of the formational fluids in the Canadian Shield is comparable with the composition of the studied fluid inclusions. This suggests that the composition of the fluids did not change in the past 2 Ga and base metal remobilization by formational fluids could have taken place any time after the formation of the South Kawishiwi intrusion. Sulfur isotope studies carried out on the primary metamorphic (δ34S = 7.4-8.9‰) and the hydrothermal sulfide mineral assemblage (δ34S = 5.5-5.7‰) proves, that during the hydrothermal fluid flow the primary metamorphic ores were remobilized.

7.
Environ Sci Technol ; 46(8): 4539-45, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22428618

RESUMO

The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.


Assuntos
Poluentes Ambientais/química , Isótopos de Oxigênio , Compostos de Selênio/química , Água/química , Concentração de Íons de Hidrogênio , Ácido Selênico , Temperatura
8.
Nature ; 442(7105): 908-11, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16929296

RESUMO

The presence of mass-independently fractionated sulphur isotopes (MIF-S) in many sedimentary rocks older than approximately 2.4 billion years (Gyr), and the absence of MIF-S in younger rocks, has been considered the best evidence for a dramatic change from an anoxic to oxic atmosphere around 2.4 Gyr ago. This is because the only mechanism known to produce MIF-S has been ultraviolet photolysis of volcanic sulphur dioxide gas in an oxygen-poor atmosphere. Here we report the absence of MIF-S throughout approximately 100-m sections of 2.76-Gyr-old lake sediments and 2.92-Gyr-old marine shales in the Pilbara Craton, Western Australia. We propose three possible interpretations of the MIF-S geologic record: (1) the level of atmospheric oxygen fluctuated greatly during the Archaean era; (2) the atmosphere has remained oxic since approximately 3.8 Gyr ago, and MIF-S in sedimentary rocks represents times and regions of violent volcanic eruptions that ejected large volumes of sulphur dioxide into the stratosphere; or (3) MIF-S in rocks was mostly created by non-photochemical reactions during sediment diagenesis, and thus is not linked to atmospheric chemistry.


Assuntos
Archaea/metabolismo , Atmosfera/química , Oxigênio/metabolismo , Enxofre/análise , Austrália , Água Doce , Sedimentos Geológicos/química , Fotoquímica , Água do Mar , Isótopos de Enxofre , Fatores de Tempo , Erupções Vulcânicas
9.
Environ Sci Technol ; 39(18): 7134-40, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16201639

RESUMO

Rivers with high biological productivity typically show substantial increases in pH and dissolved oxygen (DO) concentration during the day and decreases at night, in response to changes in the relative rates of aquatic photosynthesis and respiration. These changes, coupled with temperature variations, may impart diel (24-h) fluctuations in the concentration of trace metals, nutrients, and other chemical species. A better understanding of diel processes in rivers is needed and will lead to improved methods of data collection for both monitoring and research purposes. Previous studies have used stable isotopes of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) as tracers of geochemical and biological processes in streams, lakes, and marine systems. Although seasonal variation in 6180 of DO in rivers and lakes has been documented, no study has investigated diel changes in this parameter. Here, we demonstrate large (up to 13%o) cycles in delta18O-DO for two late summer sampling periods in the Big Hole River of southwest Montana and illustrate that these changes are correlated to variations in the DO concentration, the C-isotopic composition of DIC, and the primary productivity of the system. The magnitude of the diel cycle in delta18O-DO was greater in August versus September because of the longer photoperiod and warmer water temperatures. This study provides another biogeochemical tool for investigating the O2 and C budgets in rivers and may also be applicable to lake and groundwater systems.


Assuntos
Isótopos de Carbono/análise , Carbono/química , Química/métodos , Monitoramento Ambiental/métodos , Isótopos/análise , Oxigênio/química , Ânions , Compostos Inorgânicos de Carbono/análise , Carbonatos/análise , Sedimentos Geológicos/análise , Concentração de Íons de Hidrogênio , Modelos Químicos , Montana , Compostos Orgânicos/análise , Oxigênio/análise , Consumo de Oxigênio , Fotossíntese , Estações do Ano , Temperatura , Fatores de Tempo , Oligoelementos , Água/análise
10.
Rapid Commun Mass Spectrom ; 19(2): 105-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15593062

RESUMO

On-line delta34S analysis of sulfate using an elemental analyzer has a number of advantages vs. conventional off-line techniques, such as ease of operation, rapidity, and the requirement for small amounts of material. Although the analyses are performed by converting sulfate into SO2 gas, the effect of sulfate-delta18O composition upon the SO2-delta18O composition and the value of delta66 during elemental analysis, and ultimately the calculated sulfate-delta34S composition, has rarely been addressed. Three BaSO4 samples were prepared with known identical delta34S compositions, but with a wide range of delta18O compositions. delta18O values were shown to range over 40 per thousand, but conventional on-line delta34S analyses verified that the sulfate-delta34S compositions were identical. These results indicate that conventional on-line analysis of sulfate-delta34S is unaffected by the value of sulfate-delta18O, and suggest that sulfide-delta34S standards can be used to calibrate sulfate-delta34S analyses (and vice versa). Moreover, these results suggest that it may be possible to use on-line sulfur isotope analysis of SO2 to measure delta33S and Delta33S in addition to delta34S, as a faster and safer alternative to the SF6 technique currently utilized, and hence promote further study of mass-independent sulfur isotope fractionation effects.


Assuntos
Monitoramento Ambiental/métodos , Isótopos de Oxigênio/análise , Sulfatos/química , Isótopos de Enxofre/análise , Enxofre/análise , Marcação por Isótopo , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Dióxido de Enxofre/análise
11.
Phytochemistry ; 65(10): 1369-81, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15231410

RESUMO

Compound-specific hydrogen and carbon isotopic compositions in n-alkanoic acids, phytol and sterols were determined for various plant classes (terrestrial C3-angiosperm; C3-gymnosperm; C4; crassulacean acid metabolism (CAM); and aquatic C3 plants) in order to investigate isotopic fractionations among various plant classes. In all plants, lipid biomolecules are depleted in both D (up to 324 per thousand ) and 13C (up to 14.7 per thousand ) relative to ambient water and bulk tissue, respectively. In addition, the magnitude of D- and 13C-depletion of lipid biomolecules is distinctive depending on plant classes. For example, C3 angiosperm n-alkanoic acids are less depleted in D (95+/-23 per thousand ) and 13C (4.3 +/- 2.5 per thousand ) relative to ambient water and bulk tissue, respectively, while C4 plant n-alkanoic acids are more depleted in D (119 +/- 15 per thousand ) and 13C (10.2 +/- 2.0 per thousand ). On the other hand, C3 angiosperm phytol and sterols are much more depleted in D (306 +/-12 per thousand for phytol, 211+/-15 per thousand for sterol) with less depletion in 13C (4.1 +/- 1.1 per thousand for phytol, 1.3 +/- 0.9 per thousand for sterol) relative to ambient water and bulk tissue, respectively, while C4 plant phytol and sterols are less depleted in D (254 +/- 7 per thousand for phytol, 186 +/- 13 per thousand for sterols) with much more depletion in 13C (9.0 +/- 1.2 per thousand for phytol, 5.0 +/- 1.1 per thousand for sterols). Among various plant classes, there is a positive correlation between the D- and 13C-depletion for n-alkanoic acids, while a negative correlation was found for phytol and sterols from the same plants.


Assuntos
Lipídeos/biossíntese , Plantas/metabolismo , Isótopos de Carbono , Cycadopsida/metabolismo , Hidrogênio/metabolismo , Magnoliopsida/metabolismo , Desenvolvimento Vegetal , Especificidade da Espécie , Água
12.
Phytochemistry ; 65(3): 323-30, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14751303

RESUMO

Compound-specific carbon and hydrogen isotopic compositions of lipid biomolecules (n-alkanes, n-alkanoic acids, n-alkanols, sesquiterpenes, diterpenes, phytol, diterpenols and beta-sitosterol), extracted from Cryptomeria japonica leaves, were determined in order to understand isotopic fractionations occurring during lipid biosynthesis in this species. All lipid biomolecules were depleted in both 13C and D relative to bulk tissue and ambient water, respectively. n-Alkyl lipids associated with the acetogenic pathway were depleted in 13C relative to bulk tissue by 2.4-9.9 per thousand and depleted in D relative to ambient water by 91-152 per thousand. C(15)- and C(30)-isoprenoid lipids (sesquiterpenes, squalene and beta-sitosterol) associated with the mevalonic-acid pathway are depleted in 13C relative to bulk tissue by 1.7-3.1 per thousand and depleted in D relative to ambient water by 212-238 per thousand. C(20)-isoprenoid lipids (phytol and diterpenoids) associated with the non-mevalonic-acid pathway were depleted in 13C relative to bulk tissue by 4.6-5.9 per thousand and depleted in D relative to ambient water by 238-303 per thousand. Phytol was significantly depleted in D by amounts up to 65 per thousand relative to other C(20) isoprenoid lipids. The acetogenic, mevalonic-acid and non-mevalonic-acid pathways were clearly discriminated using a cross-plot between the carbon and hydrogen isotopic fractionations.


Assuntos
Cryptomeria/metabolismo , Lipídeos/biossíntese , Isótopos de Carbono , Fracionamento Químico/métodos , Colódio/química , Óxido de Deutério , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lipídeos/análise , Lipídeos/química , Folhas de Planta/metabolismo , Estações do Ano
13.
Environ Sci Technol ; 36(15): 3270-4, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12188352

RESUMO

Permanganate oxidation of chlorinated ethylenes is an attractive technique to effect remediation of these important groundwater contaminants. Stable carbon isotope fractionation associated with permanganate oxidation of trichloroethylene (TCE), tetrachloroethylene (PCE), and cis-1,2-dichloroethylene (cDCE) has been measured, to study the possibility of applying stable carbon isotope analysis as a technique to assess the efficacy of remediation implemented by permanganate oxidation. Average carbon isotope fractionation factors of alphaTCE = 0.9786, alphaPCE = 0.9830, and alphacDCE = 0.9789 were obtained, although the fractionation factor for PCE may be interpreted to change from a value of 0.9779-0.9871 during the course of the reaction. The fractionation factors for all three compounds are quite similar, in contrast to the variation of fractionation factors vs degree of chlorination observed for other degradative processes, such as microbial dechlorination. This may be due to a common rate-determining step for permanganate oxidation of all three compounds studied. The large fractionation factors and the relative lack of dependence of the fractionation factors upon other environmental factors (e.g. oxidation rate, presence of multiple contaminants, incomplete oxidation, presence of chloride in solution) indicate that monitoring delta13C values of chlorinated ethylenes during oxidation with permanganate may be a sensitive, and potentially quantitative, technique to investigate the extent of degradation.


Assuntos
Dicloroetilenos/química , Compostos de Manganês/química , Oxidantes/química , Óxidos/química , Solventes/química , Tetracloroetileno/química , Tricloroetileno/química , Poluentes Químicos da Água/análise , Isótopos de Carbono/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...